Class 1 CF Mutations

نویسنده

  • Michael Wilschanski
چکیده

Since the discovery of the gene that causes Cystic Fibrosis, our knowledge of how mutations in this gene cause the varied pathophysiological manifestations of this disease has increased substantially. This knowledge has led to the possibility of new therapeutic approaches aimed at the basic defect. Class I mutations of CFTR include premature termination codons (PTCs) or stop codons. In the last 10 years there has been a concerted international effort to utilize the concept of read-through of the stop codon producing full length functioning CFTR protein. This author considers that this approach will result in clinical trials in CF patients carrying these mutations. Class I mutations include PTCs or nonsense codons. A nonsense mutation is a single point alteration in DNA that results in the inappropriate presence of a UAA, UAG, or UGA stop codon in the protein-coding region of the corresponding messenger RNA (mRNA) transcript. Such a stop codon causes premature cessation of translation, with protein truncation leading to loss of function and consequent disease. Nonsense mutations are responsible for about 10% of cystic fibrosis cases worldwide. However, in Israel, nonsense mutations are the cause of cystic fibrosis in most patients (Kerem et al., 1997). As such mutations produce little functional CFTR, these patients usually have a phenotype of CF with exocrine pancreatic insufficiency. The increased understanding of ribosomal function, the process of translation, and small molecules that change the interaction between the ribosome and mRNA have led to the identification of several agents that are capable of suppressing PTCs. This has resulted in a novel strategy to treat CF and other genetic disorders caused by PTCs by restoring full length protein. Aminoglycoside antibiotics were the first drugs demonstrated to suppress PTCs in disease-causing mutations, allowing the translation of full length proteins (Hermann, 2007). Aminoglycosides are antibacterial agents, their mode of action is interfering with normal translation via binding to the bacteria 16S rRNA. There is reduced discrimination between cognate and near-cognate tRNA hence reducing translational fidelity. Eventually, there is accumulation of truncated and non-functioning proteins resulting in bacterial cell death. Gorini and Kataja (1964) demonstrated that aminoglycosides may suppress PTCs and lead to full length translation in E. coli. Aminoglycosides may also bind to human 18S rRNA subunit reducing discrimination of near-cognate tRNAs. This interaction is less stable than in bacteria but may be sufficient to lead to an insertion of a near-cognate aminoacyl-tRNA into the ribosomal A site that is subsequently incorporated into the polypeptide chain. Howard et al. (1996) described PTC suppression by the synthetic aminoglycoside geneticin (G418) to restore function in HeLa cells expressing nonsense codons in 1996. This pivotal work was extended to four nonsense mutations of cftr who were expressed by the human airway cell line IB3-1.In this study, the commonly used aminoglycoside, gentamicin, was incubated with these cells and full length protein was produced (Bedwell et al., 1997).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What can the CF registry tell us about rare CFTR-mutations? A Belgian study

BACKGROUND CFTR2 provides clinical and functional information of the most common CFTR-mutations. Rare mutations (RMs) occur in only a few patients with limited reported clinical data. Their role in CF-disease liability is hardly documented. METHODS Belgian CF-Registry 2013 data were analyzed to identify CF with at least 1 RM (CF+RM). Clinical data and sweat chloride of CF+RM were compared to ...

متن کامل

Analysis of CFTR Gene Mutations in Children with Cystic Fibrosis, First Report from North-East of Iran

 Objective(s):  More than 1500 registered mutations in cystic fibrosis transmembrane regulator (CFTR) gene are responsible for dysfunction of an ion channel protein and a wide spectrum of clinical manifestations in patients with cystic fibrosis (CF). This study was performed to investigate the frequency of a number of well-known CFTR mutations in North Eastern Iranian CF patients. Material and...

متن کامل

Novel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis

Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extractio...

متن کامل

Prevalence of Cystic Fibrosis Trans-membrane Conductance Regulator Gene common mutations in children with cystic fibrosis in Isfahan, Iran

Background: Cystic fibrosis (CF) is the most common lethal genetic disorder of Cystic Fibrosis Trans-membrane Conductance (CFTR) Regulator gene mutations. We aimed to investigate common mutations in CF patients and to assess its possible relationship with clinical presentations. Materials and Methods: This cross sectional study was conducted on 36 CF patients who were referred to a tertiary ped...

متن کامل

CFTR Mutations in Congenital Absence of Vas Deferens

A qualitative diagnosis of infertility requires attention to female and male physical abnormalities, endocrine anomalies and genetic conditions that interfere with reproduction. Many genes are likely to be involved in the complex process of reproduction. Cystic fibrosis (CF) incidence varies in different White people populations (a higher incidence of CF is observed in northern–western European...

متن کامل

Finding new medicines to fight CF: multiple steps of a success story

Background Cystic fibrosis (CF) is a major life-limiting genetic disease leading to severe respiratory symptoms caused by mutations in CF trans membrane conductance regulator (CFTR), a chloride channel expressed at the apical membrane of epithelial cells. Absence of functional CFTR from the surface of respiratory cells reduces mucociliary clearance, promoting airways obstruction, chronic infect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012